mechanistic studies, there have been no measurements of secondary KIE for this prototypical five-membered ring intramolecular elimination reaction. Pyrolysis of transdeuterated $(2R,3R)$ -3 $(X = D)$ at 120 °C afforded $(+)$ apopinene (2) that had $[\alpha]_f = +1.343^\circ$, and a secondary KIE of 1.061 may be calculated from the relationship³ $k_{\rm H}/k_{\rm D} = ([\alpha]_i - [\alpha]_i)/([\alpha]_i + [\alpha]_i)$ where $[\alpha]_i = -45.1$ (Table I). No dlscernable loss of deuterium was observed by mass spectral analysis confirming the syn elimination pathway. In a duplicate experiment, the recovered (+)- (S)-apopinene exhibited a rotation of $[\alpha]_{\text{D}} = +1.323^{\circ}$ and a secondary KIE of 1.060. Thus, the perturbations of the bending vibrations of the C-H bonds at C_{β} in the elimination process are significant at the transition state (TS) **as** evidenced by the appreciable secondary KIE.

Pyrolysis of the cis-deuterated amine oxide $3 (Y = D)$ afforded apopinene with an optical rotation of $+17.1^{\circ}$. Since the initial rotation of the $(-)$ - (R) -apopinene used in the synthesis of 3 was -45.1° , the primary syn KIE for the concerted Cope elimination is found to be 2.22. **A** temperature correction to 25 **"C** suggests a primary KIE of \sim 2.8. An accompanying mass spectral analysis using selective ion monitoring (SIMS) on this same cis-deuterated amine oxide showed that the recovered alkene contained 69.0% of its original deuterium content and a $k_{\text{H}}/k_{\text{D}}$ of 2.23 may be calculated from this datum. These combined data, for a rate-limiting nonlinear hydrogen transfer with discernible rehybridization at C_{β} , are consistent with a transition state with extensive double-bond character.

Since the oxygen of an amine oxide is weakly basic and a relatively late TS should be anticipated, it is instructive to use a stronger base in order to assess the relative

(7) Wright, D. R.; **Sims,** L. **B.; Fry, A.** *J. Am. Chem. SOC.* **1983, 105, 3714.**

magnitudes of the secondary KIE in a comparable elimination process. Mass spectral analysis of the apopinene recovered from the trans-deuterated quaternary ammonium iodide 4 $(X = D)$ showed no detectable loss of deuterium upon elimination with potassium tert-butoxide in DMSO solvent. This process is therefore a 100% syn 1,2-elimination under these reaction conditions reflecting the association of the alkoxide base with the cationic ammonium center.⁸ Treatment of trans-deuterated (2R,3R)-4 $(X = D)$ at 26 °C under these conditions afforded $(+)$ -2 that had $\lceil \alpha \rceil_f 1.54^\circ$ and a secondary KIE of 1.072. The magnitude of this KIE is smaller than that of the Cope elimination when corrected to 25 °C (\sim 1.05). The primary KIE of 1.27 (Table I) is **also** very small suggesting a somewhat earlier transition state when KO-t-Bu is employed in DMSO solvent where the potassium cation is highly coordinated and the base strength of the oxyanion is markedly increased.

In summary, we have described a highly sensitive method for measuring both primary and secondary KIE in elimination reactions.⁹ These data provide the first experimental evidence for extensive rehybridization at carbon in the Cope elimination. Recent ab initio calculations¹⁰ (MP2/631G*) of secondary KIE in the Cope elimination suggests that the rehybridization at C_{α} (secondary KIE = 1.11) is even geater than that at C_β (secondary KIE = 1.04). These combined data provide a unique explanation for the fact that a Cope elimination in the cyclooctyl system (a late TS) affords exclusively cis-cyclooctene. However, much stronger bases that involve an earlier TS with much less double-bond character give predominantly the highly strained trans-cyclooctene despite the fact ita ground-state energy is 9 kcal/mol higher in energy.3

Acknowledgment. Partial support of this work by the National Institutes of Health **CA** 47348-03 and the Ford Motor Company is gratefully acknowledged.

volving the reaction of a racemate made up of one labeled enantiomer,
see: Bergson, G.; Matsson, O.; Sjoberg, S. Chem Scr. 1977, 11, 25.
(10) Bach, R. D.; Owensby, A. L.; Andrés, J. L.; Gonzalez, C.; Schlegel,
H. B. J. Am.

Synthesis of 1,4-Dicarbonyl Compounds via the Conjugate Addition of a Masked Activated Ester, ROCH(CN)₂

Yasufumi Kubota, Hisao Nemoto, and Yoshinori Yamamoto*

Department of Chemistry, Faculty of Science, Tohoku University, Sendai **980,** *Japan Received September 27, 1991*

Summary: A new acyl anion equivalent for the preparation of masked activated esters, the protected hydroxymalonitrile l, readily undergoes conjugate addition to α , β -unsaturated carbonyl derivatives 2 to give the masked 1,4-dicarbonyl compounds 3 in good to high yields. 1,4- Dicarbonyl compounds 4, in which one of the two carbonyl groups has a reactivity different from the other, can be prepared selectively from 3.

1,4-Dicarbonyl compounds are starting materials and intermediates in many important natural product syntheses, and a number of methods for their syntheses have appeared.¹ One of the most common approaches is the conjugate addition of acyl anion **5** or ita equivalent to α, β -unsaturated carbonyl compounds.¹ Since the sub-

0022-3263/91/1956-7195\$02.50/0 *0* 1991 American Chemical Society

^{(5) (}a) Schrieber, S. **L.; Claw, R. E.; Regan, J.** *Tetrahedron Lett.* **1982,** 3867. (b) Eschinazi, H. E.; Pines, J*. J. Org. Chem.* 1**959**, *24*, 1369. (c)
Stemke, J. E.; Bond, F. T. *Tetrahedron Lett.* **1975,** 1815.(d)Brown, H. **C.; Wolfgang, R. H.; Breuer, E.; Murphy, W. S.** *J. Am. Chem. SOC.* **1964,** *86,* **3565. (e) Icke,** R. **N.; Wisegarver, B. B.; AUes,** *G.* **A.** *Organic Syn-thesis;* **Homung,** E. c., **Ed.; Wiley: New York, 1955; Collect. Vol. 111, p 723.**

^{(6) (}a) Cram, D. J.; McCarty, J. E. *J. Am. Chem. SOC.* **1954, 76,5740. (b) Cope, A. C.; LeBel, N. A.** *Zbid.* **1960,82,4656. (c) Saunders, W. H., Jr.; Cockerill, A. F.** *Mechanism of Elimination Reactions;* **Wiley-Interscience: New York, 1973.**

^{(8) (}a) Chiao, W.; Saunders, W. H., Jr. J. Am. Chem. Soc. 1978, 100, 2802. (b) Bach, R. D.; Knight, J. W. Tetrahedron Lett. 1979, 3815. (9) For an earlier intermolecular polarimetric differential method in-

⁽¹⁾ For the syntheses of 1,4-dicarbonyl compounds via conjugate ad-dition, *see:* **Corey,** E. **J.; Hegedus, L.** s. *J. Am. Chem.* **SOC. 1969,91,4926.** Seyferth, D.; Hui, R. C. J. Am. Chem. Soc. 1985, 107, 4551. Shono, T.; Nishiguchi, I.; Ohmizu, H. J. Am. Chem. Soc. 1977, 99, 7396. Scheffold, R.; Orlinski, R. J. Am. Chem. Soc. 1983, 105, 7200. Mukaiyama, T.; Narasaka, K. **2531.**

Table I. Conjugate Addition Reactions of Protected Hydroxymalonitrlle 1 with Electron-Deficient Olefine

entry	substrate	condns ⁴	reaction time (h)	isolated yield of $3(%)$
	сн, — снеосн,	A	9	76
2	сн, - снеосн,	в	12	85
3	$CH2=CHCOCH3$	C	24	71
4	СН _з СН=СНСОСН _з	A	12	86
5		A	12	82
6	CH ₂ =CHCO ₂ CH ₃	A	10	90
7	$CH3CH=CHCO2CH3$	A	12	87
8	сн.сн-снен-снео.сн.	A	8	75
9	СНаСН-СНСН=СНСО-СНа	A٥	18	86
10	сн.=снсм	A٥	11	74

^{a} Key: A, K_2CO_3 (1.1 equiv), 1 (1.2 equiv), acetone, rt; B, Et_3N (10 **mol** %), **1 (1.2 equiv), benzene, rt; C, Ni(acac), (10 mol** %), **1 (1.2 equiv), CH,CN, 10 Kbar.** * **1.5 equiv of 1 was used.**

stituent R in **5** was hydrogen or carbon in the previous cases, the reactions which could be utilized for further manipulation of the γ -carbonyl group of the resulting 1.4-dicarbonyl adduct were limited to those of ketones and aldehydes. Moreover, the conjugate addition reactions are sometimes accompanied by $1,2$ -addition, and thus some optimization of the reaction conditions is often needed to **minimize this** side reaction.2 We have recently developed a new acyl anion equivalent 1 for the preparation of masked activated esters? If 1 undergoes efficient conjugate addition to 2, 1,4-dicarbonyl derivative 3 would be formed in which one of the two carbonyl groups can act as a masked activated ester equivalent, and thus further compounds **4** which **are** not available by the previous methods.

The resulta are summarized in Table I. **Three** different types of conditions were examined for the reaction with methyl vinyl ketone. The use of K_2CO_3 (1.1 equiv) in acetone at room temperature or catalytic amounts of $Et₃N$ (10 mol %) in benzene at room temperature gave the 1,4-adduct in good yields (entries 1 and 2). The 1,2-adduct was not produced at **all.** In addition to these weakly basic conditions, we examined the nickel-catalyzed procedure which was **known as** a mild and efficient option for carrying out Michael additions with β -dicarbonyl compounds.⁴ Although the reaction with methyl vinyl ketone was very sluggish at 1 bar, the conjugate addition proceeded very smoothly at high pressures (e.g., 10 Kbar) (entry 3 ⁵ to give the same 1,4-adduct along with small amounts of the starting materials and no side reactions took place. Not only enones (entries 4 and *5)* but **also** enoates underwent the conjugate addition (entries 6-9). The regioselectivity is noteworthy; neither 1,6-conjugate addition to the dienoate nor epoxide ring opening of the γ , δ -epoxy- α , β -enoate **took** place. The conjugate addition to acrylonitrile also proceeded very smoothly (entry 10).

Next we examined the unmasking conversion of **3** into **4.** The ethoxyethyl group of **3a** was removed with trifluoroacetic acid (TFA) in dichloromethane at 0° C. After evaporation of TFA under reduced pressure at 0 "C, pyrrolidine was added to a dichloromethane solution of the resulting crude alcohol. Amide ester **4a** was obtained in **88%** yield (eq 1). The addition of benzyl alcohol and

triethylamine, instead of pyrrolidine, produced mixed ester **4b** in 69% yield (eq 2). In conclusion, we are now in a position to prepare l,4-dicarbonyl compounds which have different functional groups or different modifications of the same functional group via conjugate additions using 1 **as** a masked acyl anion.

The following procedure for the addition of **1** to methyl vinyl ketone is representative. To an anhydrous acetone solution (1.6 mL) of 1 (124 mg, 0.804 mmol) and methyl vinyl ketone (56 μ L, 47 mg, 0.67 mmol) was added anhydrous K_2CO_3 (102 mg, 0.738 mmol), and the resulting heterogeneous mixture was stirred for 9 h at room temperature. Addition of saturated aqueous $NH₄Cl$ solution, extraction with ether (three times), washing with saturated brine, *drying* **(MgS04),** concentration, and **silica** gel column chromatography with hexane-ethyl acetate (151) **as** eluant gave the adduct (115 mg, **0.513** mmol) in 76% yield.

Supplementary Material Available: Experimental detaila for the preparation of 3 and 4 and the spectral and analytical **data of the products (4 pages). Ordering information is given on any current masthead page.**

^{(2) (}a) Lucchett, J.; Dumont, W.; Krief, A. Tetrahedron Lett. 1979, 29, 2695. (b) Brown, C. A.; Yamaichi, A. J. Chem. Soc., Chem. Commun. 1979, 100. (c) El-Bouz, M.; Wartski, L.; El-Bouz, M. Tetrahedron 1982, 38, 3285. (3

^{4515.}

⁽⁴⁾ Nelson, J. H.; Howella, P. N.; Delullo, *G.* **D.; Landen, G. L.; Henry, R. A.** *J. Org. Chem.* **1980,45, 1246.**

⁽⁵⁾ For a recent example of high-pressure mediated organic reactions, see: Yamamoto, Y.; Furuta, **T.; Kurata, T.; Matauo, J.** *J. Org. Chem.* **1991,56,5737 and references cited therein. See also:** *Organic Synthesia at High Pressures,* **Mataumoto, K., Acheson, R. M., E&.;** J. **Wiley New York, 1991.**